“Lettuce” be Sustainable: Why does (and should) a Physical Therapist Care About Sustainable Agriculture in 2020?

Masks, fear, illness, death, economic shutdown, hoarding and empty grocery store shelves.  These things are forever etched in the history books of 2020 in association with the COVID19 pandemic.  Pre-pandemic, most Americans were fortunate enough to have never experienced any problem with food supply and took fully stocked grocery stores for granted. However, for years, food production and distribution processes have been vulnerable to breakdown in the face of environmental, economic and sociopolitical crisis.  The COVID19 pandemic has merely illuminated this.  But the problem runs deeper than simply not having the grocery store shelves fully stocked. Even when contemporary food production and distribution processes are running smoothly, they produce foods that have diminished nutritional value by the time they get to the grocery store shelves. And it gets worse every year. To put it simply, the broccoli in today’s produce section has less nutritional value than the broccoli of 5 years ago.  The declining nutritional value of our food has been a key driver of the rise of illness resulting from metabolic disorders in the United States.  And those with metabolic disorders have weakened immune systems and are more prone to illness such as COVID19. All of the processes associated with production, distribution and waste management, otherwise known as our “food system” is intimately intertwined with human health.  

And the intimate relationship between our food system and human health is exactly why I care about this as a physical therapist.  Lack of access to healthy foods lowers the potential for all of us to lead active and healthy lives. Poor nutrition is even the root cause of why people end up in physical therapy in the first place.  I spend part of my time as a physical therapist working at a skilled nursing facility.  We frequently receive patients from hospitals that have been diagnosed with metabolic encephalopathy, which alters ones mental state.  The cause of metabolic encephalopathy is often liver disease, uncontrolled diabetes and kidney disease, which for many people is preventable with good nutrition.  Poor nutrition also increases the risk of infection and often our metabolic encephalopathy patients come in after they’ve suffered a urinary tract infection.  While these types of metabolic encephalopathy are reversible with overcoming infection and getting metabolism back in check, these people spend weeks in recovery and develop severe weakness and difficulty with daily activities (i.e., walking, getting out of a chair).  This health decline often results in significant loss of quality of life and for some causes them to lose their ability to live independently.  Furthermore, lack of access to good nutrition is especially problematic for people overcoming injury or coping with chronic illness.  The outcomes that I can help my patients achieve through physical therapy interventions (i.e., increased strength, endurance, mobility, decreased pain) are diminished when they don’t have access to healthy foods that complement their physical rehabilitation.  The role of nutrition in our physical well-being is not to be underestimated.  

COVID19 has monopolized the news in terms of illness and death rates, for obvious reasons, but it is interesting to put some facts and figures into perspective.  About 50% of Americans have diabetes or are pre-diabetic and 530,000 people die annually in the U.S. due to poor nutrition, which is almost 1500 deaths per day (Dr. Mark Hyman podcast: What does food have to do with COVID19?).  By comparison, about 265,000 people have died from COVID19 in the US so far this year, with only about 1 month left in the year.  This is absolutely not to diminish the gravity of the COVID19 situation or diminish the value of the lives that have been lost due to it.  However, it is important to point out the magnitude of the nutrition problem in the U.S.  Most perceive that malnutrition is a problem that is restricted to 3rd world countries.  Not so.  What’s more is that poor nutrition and COVID19 have an important linkage.  People who are more vulnerable to COVID19 infection and subsequent death are those that are “metabolically compromised”.  Good nutrition is necessary to have a strong immune system to fight of infection of any kind—including COVID19.  Specifically, one might consider zinc, vitamin A and vitamin C which are critical, among other nutrients/vitamins, for a strong immune system and nearly 40% of Americans are not getting adequate daily intake of these.  The short story is that our resilience against death from COVID19 or any infection could be drastically improved through good nutrition that supports our immune system.  Should I mention at this point that 60% of your immune system resides in your gut?  Hyman podcast: What does food have to do with COVID19?)  Yep.  That means the quality of the food you eat is of utmost importance.  

OUR VULNERBLE FOOD SYSTEM AND HOW IT IS COMPROMISING OUR HEALTH

To illustrate why food insecurity exists as well as the relationship between the food system and human health, let’s examine the three major parts of our food system and their vulnerabilities to environmental, economic and sociopolitical crises:

  • Food Production/Processing: In the United States, food production utilizes 50% of land and 80% of the total freshwater that is consumed (Gunders, 2012).  This rate of water usage is faster than aquifer recharge in some regions (Sachs 2015). Food production also depends heavily on fertilizer and pesticide application, which is adversely impacting ecosystem biodiversity (Sachs, 2015).  Additionally, farming is increasingly focused on the mass production of fewer staple crops (i.e., wheat, corn and soy).  Reduced crop diversity reduces the nutritional value of the average diet and makes food production less resilient to environmental change (Khoury et al., 2014; Hunter et al., 2016).  For instance, should an insect that damages wheat dramatically increase in abundance during a particular growing season, a region that is focused solely on mass production of wheat will have its entire product decimated. On the contrary, a region that is producing greater crop diversity, might still, on the whole, be successful that season. The amount of processing a particular crop requires has been especially highlighted by the pandemic.  During COVID19, meat producers got hit especially hard as workers became infected with the virus and were unable to work.  Slow production increased prices and slowed supply of meats across the country.  In contrast produce that is processed in more automated ways using machinery (e.g., nuts) was less affected by the Pandemic.  
  • Food Distribution: Much of America’s produce is transported over long distances from farms to urban centers.  This transport consumes 10 % of the total energy budget in the U.S. (Gunders, 2012) and contributes to food waste as it spoils or is contaminated enroute (Sachs, 2015).  The average meal in the U.S. has traveled 1500 miles from farm to table (CUESA).  By the time produce has traveled 1000 miles or more to its destination, it has likely lost substantial nutritional value (Rickman et al., 2007).  Reliance on these long food distribution routes threatens food security in urban areas, where over 54% of the World’s population is concentrated (UN, 2018); Reliance on food supply from distant regions puts sustenance of Urban centers at the mercy of natural disasters in distant locations.  For instance, when people of the intermountain West rely heavily on produce from California’s Central Valley, their food supply may suffer in the event of large wildfires in California.  Furthermore, urban reliance on food produced in distant locations limits accessibility to produce that has short shelf-lives and, therefore, poor transportability.  This in turn, increases urban dependence on heavily processed and packaged foods that travel well but do not contain well-rounded nutrition.  Many urban areas are turning into “food deserts” in which people do not have ready access to a complete compliment of required nutrients (Walker et al., 2010).  Many pre-packaged foods contain excessive amounts of calories, but lack the well-rounded nutrition (i.e., sufficient amounts of vitamins and minerals) that humans need.  As a result, urban areas experience a dichotomous problem of nutritional excess, yet insufficiency.  This is exemplified by one-third of the world’s people being overweight and/or undernourished (Sachs, 2015; Garnett, 2013; Remans et al., 2014).  This problem impacts countries of every economic status (Garnett, 2013). It is now estimated that 19 million Americans now live in food deserts and the Pandemic could double the number of people across the globe that are experiencing food insecurity (Silva, NPR, 27 Sep 2020).  Food insecurity may have hit as many as 23% of American households in early 2020, up from 10.5% (13.7 million households) last year (Silva, NPR, 27 Sep 2020).  These numbers include people who were not able to obtain enough food to meet their needs or had uncertainty in how to obtain their next meal (Silva, NPR, 27 Sep 2020).  During the COVID19 pandemic in early 2020, issues surrounding distribution were observed in the dairy industry.  For instance, dairy producers that package and sell to restaurants and schools could no longer do so as restaurants and schools closed during the pandemic. Because of the specificity of their production and distribution lines to restaurants and schools, dairy companies were not able to quickly pivot and redirect milk to other end users.  This resulted in a lot of dairy products in both the US and the UK being dumped.  
  • Food Waste Management: 40% of the food produced is never consumed, comprises the largest component of municipal waste and is responsible for a large fraction of annual methane emissions in the United States (Gunders, 2012).  Food waste occurs at several different points during its life cycle: 1) food spoil and are thrown away during transport from farms to urban centers, 2) Food spoils or expires on store shelves or in consumer’s homes before it can be eaten, 3) food is wasted during meal preparation in the home (i.e., broccoli stems are trimmed and thrown away instead of eaten), 4) people don’t eat 100% of each meal that they prep and the unwanted food is thrown into the trash.  Uneaten food contains vitamins and minerals, that, if composted and returned to the soil, could be used to fuel the production of more nutritious food.  But instead, food that is thrown into the trash makes its way to the landfill where nutrition is lost forever rather than being used to recondition our soils and thus allowing us to continue producing food with high nutritional value. In throwing food into the landfill, we are defeating the natural process of composting that replenishes soils of their nutrients.  This in combination with farming processes increase erosion and result in nutrients being leached out of soils and washed into rivers and waterways has greatly diminished the quality of our soil and our ability to produce nutritious food.  Food waste increased during the COVID19 pandemic as producers were unable to redirect their product to alternative consumers.    Potato farmers in Idaho were left with piles of potatoes in the fields that went to waste because restaurants were closed.  Some of these potatoes were redistributed to the average consumer and some were trucked off to New York (what did we say above about the problems of long transport lines?), but more waste than usual was incurred.  Even cabbage farmers in India, who rub elbows with starving neighbors had excess food waste secondary to people losing their jobs and being unable to buy the produce.  But the COVID19 food crisis was not limited to third world countries—it hit hard in the United States too, with many people needing assistance from food banks as jobs dried up and people became unable to afford basic needs (Martin, NPR, Sep 27, 2020).  It is estimated that nearly 1 in 4 households in America have experienced food insecurity this year (Silva, NPR, Sep 27, 2020). 

Our food System Creates Mineral Deficient Foods

To specifically illustrate how our food system fails in producing food with maximal nutritional value—even in the absence of a Pandemic– we can talk about minerals (i.e., iron, zinc). Because our food system generates foods that are deficient in minerals, over 60%, 30% and 15% of the World’s seven billion people are iron, zinc and selenium deficient, respectively (White and Broadley, 2009).  Rates of mineral malnutrition are especially high in Asia and Africa (Muthayya, et al., 2013), where soil degradation is especially severe and has significantly decreased the nutritional value of crops (Lal, 2009).  Iron, zinc and selenium are just three of the minerals that the human body needs for overall health and wellness—there are many more, but are beyond the scope of this article.  Using iron, zinc and selenium as examples, here are some of the profound effects that they can have on our health in general and can specifically affect one’s course through physical therapy/rehabilitation:

Iron is critical for proper nerve functioning, temperature regulation, immune system function—just to name a few important things.  It is also critical for the ability to brain derived neurotrophic growth factor to signal other neurons and assist one’s body with learning new motor patterns—a concept known as neuroplasticity.  After neurological injury (i.e., stroke) or in the presence of a degenerative neurological condition (i.e., Parkinson’s Disease) it is especially important that good nutrition be part of a physical rehabilitation program so that the body can optimally learn and perform new movement skills.  

Zinc plays important roles in motor function (again, especially important for physical rehabilitation!), immune system function, mood and improving attention span (both of which are critical for learning!). 

Selenium is very important for cognitive function, immune system support and thyroid metabolism.  Thyroid metabolism is critical in maintaining one’s energy and mood and motivation for effortful things such as physical rehabilitation.  

More than likely, you or someone you know are affected by one or more of these deficiencies.  And with improved nutrition, their overall quality of life and ability to maximize their potential could be greatly enhanced.  

WORKING TOWARDS SOLUTIONS

The solution lies in getting to the root of the problem—literally.  To summarize in the simplest way possible: 1) The problem begins with our soils, which are being more and more nutrient depleted through the years and crop plants do not have access to enough nutrients to produce a nutritious end product.  2) We then transport food long distances from farm to table, during which it loses more nutrition.  3) We then throw away a lot of food either as it spoils enroute to supermarkets, during prep or after it spoils in individual households; the food that goes to the landfill rots and produces greenhouse gases rather than being composted by mother nature to replenish the soil for growing the next crop.  This means that we need a three-part solution which includes the following 1) bringing the farm closer to the table, 2) reducing overall food waste and 3) properly composting unavoidable food waste in order to replenish our soils with the nutrients needed to grow the next nutritious crop. 

There are solutions in the works on bigger scales through the regenerative agriculture movement, which is shifting farms away from traditional industrial farming.  Regenerative agriculture includes methods that do not apply chemicals and fertilizers at massive scales, involve no till methods to preserve our soils and, overall, work with mother Nature rather than against her.  A review of regenerative agriculture is beyond the scope of this article and you can learn more about that here: Dr. Mark Hyman. Can regenerative agriculture really heal humans and the planet?.  While regenerative agriculture could greatly improve the quality of the foods that are being produced and prevent degradation of the land, it requires wide adoption across the United States to make it effective in improving public health which will take time and it does not necessarily solve the fact that food would still be traveling 1000’s of miles to market.  We need a solution in the interim that people can act on now and have healthy food on their table quickly.   

So what is a concerned physical therapist to do?  Let’s first talk about the role of a physical therapist in patient nutrition.  

A physical therapist’s role in patient nutrition

It’s been slow for the masses—and even those within the physical therapy profession—to realize and embrace that it is within our scope of practice to educate patients on nutrition.  In fact, in a seminal paper published back in 2009, physical therapist Elizabeth Dean, stated that “….physical therapists are uniquely qualified to lead in the assault on lifestyle conditions” (Dean 2009).  She also goes on to note that in leading the assault on lifestyle conditions, physical therapists are positioned to promote the health of communities.  The American Physical Therapy Association’s stance on the role of physical therapists in patient nutrition is that “it is within the professional scope of physical therapist practice to screen for and provide information on diet and nutritional issues to patients, clients, and the community.” (APTA).  While physical therapists certainly don’t replace registered dieticians who can come up with very specific nutritional plans, physical therapists can be instrumental in screening for nutritional red flags and educate patients on what avenues might be good to go down with their nutrition as well as what specifics may be important to pay attention to given a patient’s unique situation.  For example, those with rheumatoid arthritis may want to consider a Mediterranean Diet which has been shown to reduce overall levels of inflammation in the body (Arthritis Foundation).  

However, a physical therapist’s job becomes more difficult when the problem has deeper roots than someone simply not eating the right foods.  Even when all of us eat the “right foods” we are likely not getting a full complement of vitamins and minerals due to our failing food system.  

So can a physical therapist still play a role in solving this problem? If we take an unconventional approach, I believe the answer is yes. We need to add some elements to our education—which include empowering people to produce some of their own food.  And YES.  The great majority of people living in all kinds of climates and parts of the country CAN do this.  

What I am doing to change the face of nutritional education

As a former professor and researcher at Idaho State University (Pocatello, ID, USA), I began developing a method for sustainable agriculture that can be implemented in even the smallest of urban apartments.  My students and I determined that by composting household wastes (i.e., vegetable scraps, paper, coffee filters), we could reduce the waste of a single person household by 46% all while generating compost that we could utilize to grow nutrient rich greens—microgreens specifically. To do this, we used a commercially available vermicomposter from Uncle Jim’s Worm Farm (https://unclejimswormfarm.com).  Yes—vermicomposting means composting with worms. 

In doing so, individuals could reduce their dependence on buying produce from the supermarket that had traveled 1000’s of miles from the farm where it was produced using methods that are resource heavy and degrade soils.  All the while, individuals could increase their food security and nutritional intake by bringing their farm and table right next to each other.   

For those of you who haven’t heard of microgreens, they are the edible seedlings that are usually harvested seven to fourteen days after germination when they have two fully developed cotyledon leaves (Xiao et al. 2012).  A wide variety of herbs (e.g., basil, cilantro), vegetables (e.g., radish, broccoli, mesclun) and even flowers (e.g., sunflowers) are grown as microgreens.  Microgreens are generally more flavorful, some of them quite spicy, than their mature counterparts and have grown in popularity among culinary artists for adding texture and flavor accents to salads, sandwiches and other dishes (Treadwell et al. 2010; Wallin, 2013). The increasing culinary demand as well as the ease with which microgreens can be grown, even by inexperienced gardeners in urban settings, has piqued interests in growing and eating them.  Interest in microgreens has also been generated by popular websites (e.g., Warner, 2012) touting the findings of Xiao et al. (2012), which indicate that microgreens may have four to 40 times the amount of some nutrients and vitamins as the vegetables a mature plant would produce.  However, Xiao et al. (2012) note that the nutritional aspects they measured varied widely among microgreen types, providing fodder for future study and Weber (2016) noted that the methods used to grow microgreens (i.e., soil, compost, hydroponic) can significantly impact their nutritional value.  Additionally, a systematic comparison of the environmental impacts (i.e., water use, nutrient demand) of microgreen cultivation methods has not been conducted and should be considered alongside their impacts on nutritional value when deciding how to grow microgreens and if they provide a nutrient-rich crop that can be sustainably produced.  

You can also use these methods to produce baby greens which are a more mature stage of growth than the microgreen stage.  

Seeds can be purchased from True Leaf Market.

If each one of us could begin producing even some of our own produce using sustainable methods for composting household waste, we could greatly reduce out impact on the environment, increase our food security, relying less on produce that is transported 1000’s of miles and increase our nutritional intake. I call this distributed Agriculture—each household operating as its own little producer.  Distributed agriculture makes one more resilient to environmental and socioeconomic change that is going on in the world outside of our homes.  We specifically looked how growing and consuming broccoli microgreens could reduce impact on the environment relative to consuming broccoli vegetable that is produced in California’s Central Valley. To summarize quickly, broccoli microgreens can go from seed to harvest in 7 days (93-95% less time than needed to produce broccoli vegetable), there is no need for fertilizer, distance of transport from farm to table is zero, and the mineral nutrition the microgreens is 1.73 times that of the vegetable with respect to iron, zinc, magnesium and calcium among other minerals (Weber, 2017). The full summary of this data was published in Frontiers in Nutrition in 2017 (Weber, 2017).  

In addition to the above benefits, growing one’s own food has been shown to be great for reducing stress and enhancing a sense of pride in being able to be more self-sufficient.  The therapeutic effects of growing one’s own food have been proven in many studies and in case you didn’t know there is a form of therapy called Horticultural Therapy.  The therapeutic effects span across all ages and include improved concentration, memory, cognitive function, fine motor skills, personal satisfaction as well as decreased heart rate, stress, and anxiety (Haller et al. 2019).  

If you are interested in learning more about the methods for taking charge of your nutrition and growing your own produce at home, please contact me.  I am currently producing an online course and you can be the first to know when it is being released!  I have had the pleasure of teaching/Lecturing about this topic within the past few years at County Extension Offices in Iowa and the Greater Des Moines Botanical Garden (Des Moines, IA, USA).  Due to the pandemic and the widespread need of this information, I am hoping that a digital course will make this more accessible to the masses.  

REFERENCES CITED AND RESOURCES FOR MORE INFORMATION

APTA.  Role of PT Diet Nutrition. < https://www.apta.org/apta-and-you/leadership-and-governance/policies/role-of-pt-diet-nutrition >. Accessed: 29 Nov 2020. 

Arthritis Foundation. Anti-inflammatory Diet Do’s and Don’t’s.  https://www.arthritis.org/health-wellness/healthy-living/nutrition/anti-inflammatory/anti-inflammatory-diet.  Accessed: 28 Nov 2020. 

Burlingame. 2014.. Grand challenges in nutrition and environmental sustainability. Frontiers in Nutrition.  1:3. doi:10.3389/fnut.2014.00003

CUESA.How far does your food travel to get to its plate?  < https://cuesa.org/learn/how-far-does-your-food-travel-get-your-plate >. accessed: 29 Nov 2020. 

Dean, E. 2009.  Physical therapy in the 21st Century (Part I): Toward practice informed by epidemiology and the crisis of lifestyle conditions.  Physiotherapy Theroy and Practice, 25(5): 330-353.  

Dr. Mark Hyman, The Doctor’s Farmacy Podcast.  Can regenerative agriculture really health humans and the planet? https://drhyman.com/blog/2020/11/25/podcast-ep146/.  Accessed: 29 Nov 2020.  

Dr. Mark Hyman, The Doctor’s Farmacy Podcast.  What does food have to do with COVID19?  https://drhyman.com/blog/2020/11/27/podcast-minisode64/#ql-video.  Accessed: 28 Nov 2020. 

Garnett, 2013 Symposium I: sustainability and food security, food sustainability: problems, perspectives and solutions. Proc Nutr Soc (2013) 72:29–39.

Gunders, 2012. Wasted: How America Is Losing up to 40 Percent of Its Food from Farm to Fork to Landfill. National Resources Defense Council Issue Paper. IP: 12-06-B.  Available from: < https://www.nrdc.org/sites/default/files/wasted-food-IP.pdf > accessed: 29 Nov 2020.

Haller et al. 2019. The profession and practice of horticultural therapy. CRC Press.  Taylor and Francis, Boca Raton, FL.  

Hunter et al. 2016. Enabled or disabled: is the environment right for usingbiodiversity to improve nutrition? Frontiers in Nutrition.  3:14. doi:10.3389/fnut.2016.00014

Khoury et al. 2014 Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A. 111(11):4001–6.

Lal R. 2009. Soil degradation as a reason for inadequate human nutrition. Food Secur. 1:45–57. doi:10.1007/s12571-009-0009-z

Martin, M. 27 Sep 2020. NPR. A crisis within a crisis: Food insecurity and COVID-19. https://www.npr.org/2020/09/27/913612554/a-crisis-within-a-crisis-food-insecurity-and-covid-19. Accessed: 29 Nov 2020. 

Muthayya et al. 2013. The global

Muthayya et al. 2013. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One. 8(6):e67860. doin:10.1371/journal.pone.0067860.

Remans et al. 2014. Measuring nutritional diversity of national food supplies. Global Food Secur.  3:174–82. doi:10.1016/j.gfs.2014.07.001

Rickman et al. 2007. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J Sci Food Agric.  87:930–44.

Sachs, 2015. Chapter 10 food security. The Age of Sustainable Development. New York: Columbia University Press. p. 317–53.

Sliva. C. 27 Sep 2020. NPR. Food Insecurity in the US by the Numbers. https://www.npr.org/912486921 accessed: 29 Nov 2020. 

Treadwell D, Hochmuth R, Landrum L, Laughlin W. 2010.  Microgreens: A New Specialty Crop. Gainesville, FL: University of Florida IFAS Extension HS1164.

United Nations. 16 May 2018.. 68% of the world population projected to live in urban areas by 2050, says UN. < https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html >. Accessed: 29 Nov 2020. 

Walker et al. 2010. Disparities and access to healthy food in the United States: a review of food deserts literature. Health Place. 16(5):876–84. doi:10.1016/j.healthplace.2010.04.013

Warner. 2012.   Tiny Microgreens Paced with Nutrients. (2012). Available from: < http://www.webmd.com/diet/20120831/tiny-microgreens-packed-nutrients >Accessed: 29 Nov 2020. 

Wallin C. 2013. Growing Microgreens for Profit. Anacortes, WA: Headstart Publishing, LLC. 

Weber CF. Nutrient concentration of cabbage and lettuce microgreensgrown on vermicompost and hydroponic growing pads. J Hortic (2016) 3:4. doi:10.4172/2376-0354.1000190

White and Broadley, 2009. Biofortifying crops with essential mineral elements. Trends Plant Sci (2005) 10(12):586–93. doi:10.1016/j.tplants.2005.10.001

Xiao et al. 2012. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens.  J Ag. Food Chem. 60: 7644-7651.

Respiratory Muscle Training (RMT) for Parkinson’s Disease: Be proactive about respiratory health and quality of life

Patients with Parkinson’s Disease (PD) often develop respiratory weakness and lower lung capacities. This greatly diminishes quality of life, leading to difficulties with breathing, speaking, and swallowing.  Respiratory weakness can also lead to one of the most common causes of death in people with Parkinson’s Disease –aspiration pneumonia—especially in the late stages of the disease.

Individuals with PD can experience over 50% decreases in maximum inspiratory pressure and maximum expiratory pressure, which is essentially the force with which one can inhale or exhale, respectively (Sapienza et al. 2011).  Poor ability to inhale may be attributable to reduced respiratory muscle strength and increased chest wall rigidity (Sathyaprabha et al. 2005), which are two common characteristics of PD.

In short, living the best possible life with PD includes taking preventative measures to reduce PD’s impact on the respiratory system.  There are currently no standard protocols for respiratory therapy for people with PD, but research is beginning to show some promise for exercising the respiratory system –just like one should exercise the rest of the body.

Respiratory Muscle Training (RMT)

Research on techniques to improve respiratory health is in its infancy, but some studies have indicated that a technique called Respiratory Muscle Training (RMT) may significantly improve respiratory muscle strength (Jones and Busse, 2012).  RMT involves inhaling and/or exhaling against resistance through a device called a respiratory muscle trainer.

ProperPosturewithRespiratoryMuscleTraining

Proper posture for respiratory muscle training (source: Sapienza et al. 2011)

Research has shown that RMT can increase respiratory muscle strength (Sapienza et al. 2011 Reychler et al. 2016).  Put simply, RMT can improves one’s ability to cough, breathe, swallow and talk at normal volume.  This leads to the following improvements in quality of life:

  • A good strong cough = clearing secretions and foreign objects from the airways
  • Ease with swallowing=prevention of choking, aspiration (getting food into the airways) and subsequent infection and pneumonia that could develop.
  • Talking with adequate volume= improved communication and social relationships.

Two forms of RMT have been examined: inspiratory muscle strength training (strength for inhaling) and expiratory muscle strength training (strength for exhaling).

In a study of 60 participants, half of which were randomly chosen to utilize a expiratory muscle strength trainer (EMST) for 4 weeks while the other group utilized a sham device, EMST was found to increase maximum expiratory pressure by 27%, improve swallowing function (Sapienza et al. 2011).  Other studies have also demonstrated that EMST can improve coughing and a reduction in incidence of aspiration (Troche et al. 2010; Pitts et al. 2009).  In short, EMST can make critical improvements in strength that protect lungs from aspiration and subsequent pulmonary complications.

Studies of inspiratory muscle strength training in people with PD are currently underway (Ferro et al. 2019).  However, a study that has been done on healthy adults over the age of 65 does demonstrates that (IMST) may have serious benefits in improving maximum inspiratory pressure (Reychler et al. 2016).  Over the course of a 4-week IMST program, 16 participants were able to increase their maximum inspiratory pressure by 38% (Reychler et al. 2016).  Over the course of the 4 weeks, participants performed 15 minutes of IMST maintaining a respiratory rate of 15-20 breaths per minute; each week of the program, the resistance on their training device was increased (Reychler et al. 2016).

A device on the market that allows one to perform RMT for inspiratory and expiratory muscles is THE BREATHER (click on image below to see in store and purchase):

To see a product demo video of THE BREATHER, click here.

Using such a device, improvements in respiratory muscle strength can seen in as little as 4 weeks, but it must be utilized at high frequency daily.  For instance, in the Sapienza et al. (2011) study, participants performed 5 sets of 5 repetitions of EMST exercise, on 5 days per week.  Although it takes dedication, improvement in respiratory muscle strength can be seen in a little as 4 weeks according to Sapienza et al. (2011).  Similarly, healthy geriatric patients had improved inspiratory muscle strength over the course of 4-weeks when practicing IMST for 15 minutes on 5 days per week (Reychler et al. 2016).

Can other people besides those with Parkinson’s Disease benefit from RMT?

In addition to benefitting those with Parkinson’s Disease, RMT can improve quality of life for those with other neurodegenerative conditions (i.e., ALS (Lou Gherig’s Disease), multiple sclerosis, Huntington’s Disease; Jones and Busse, 2012)—-and even athletes and musicians without neurodegenerative conditions.

Weber Physical Therapy and Wellness can get you started on an RMT program.  As an RMT patient, you can expect the following:

  1. initial evaluation at which you will be trained in and provided with a home exercise program.
  2. one visit with your therapist per week for 4-6 weeks to check in with your progress and to adjust your home exercise program.
  3. Transition to self-guided home exercise program to continue on your own for maintenance and follow up with therapist only if needed.

If you have questions about this program and whether it may be right for you, please get in touch with Carolyn Weber via phone (505-412-8384) or email (cfweberpt@gmail.com).

References: 

Ferro et al. 2019.  Effects of inspiratory muscle training on respiratory muscle strength, lung function, functional capacity and cardiac autonomic function in Parkinson’s disease: randomized controlled clinical trial protocol. Physiotherapy Research Int. 24(3). Doi: 10.1002/pri.1777.

Jones and Busse. 2012. Management of respiratory problems in people with neurodegenerative conditions: a narrative review.  Physiotherapy. 98:1-12.

Pitts et al. 2009.  Impact of expiratory muscle strength training on voluntary cough and swallow function in Parkinson disease. Chest. 135(5): 1301-1308.

Reychler et al. 2016.  Randomized controlled trial of the effect of inspiratory muscle training and incentive spirometry on respiratory muscle strength, chest wall expansion and lung function in elderly adults.  Journal of the American Geriatrics Society.    Http://doi.org/10.1111/jgs.14097

Ribeiro et al.  2018. Breath stacking and incentive spirometry in Parkinson’s Disease: randomized crossover clinical trial.  Respiratory Physiology and Neurobiology. 255: 11-16.

Sapienza et al. 2011.  Respiratory strength training: concept and intervention outcomes. Seminars in speech and language. 32(11): 21-30.

Sathyaprabha et al. 2005.  Pulmonary functions in Parkinson’s Disease.  Indian Journal of Chest Disease Allied Sci. 47(4): 251-257.

Troche et al. 2010.  Aspiration and swallowing in Parkinson’s Disease and rehabilitation with EMST: the ASPIRE study. Neurology. 75(21): 1912-1919.

Keep the joy in Joy-riding: 11 Tips to Prevent Road-Cycling Injuries

It’s summer in Southeast, Idaho and the road-biking couldn’t be any better.  Long country roads in the mountains to challenge the legs and sweet-smelling air to fill the lungs.

IMG_2087

Early Summer in Southeast, Idaho

But wherever you are, I am sure that you want to enjoy road cycling too.  Now and well into the future.  Key to this, is staying injury and pain free.  While cycling is associated with being low-impact and lower injury risk than other sports, there are still some issues that can crop up that would be best avoided to keep the joy in joy-riding.  Below are 11 tips regarding bike fit and biomechanics that are important in avoiding pain and injury.

  1. Saddle: Be sure that your saddle is level.  If you are sliding too far forward, you will have too much weight being placed on your hands, arms and lower back.  If the seat is tilted backwards, you may place strain on your lower back and experience pain in your own saddle area.  The saddle should be a comfortable distance from the handlebars–if it is too close to the handlebars, more weight will be placed on the arms and mid back; if the saddle is too far from the handlebars, there will be more strain on the low back and neck.  Saddle height should be placed by someone who can help you assess your knee angle when you are sitting in the seat.  When your leg is in its most extended position (the point in peddling when your foot is at its lowest point going around the cranks) your ideal knee angle should be close to 35 degrees (see picture below) to lessen stress on the knee.  Recommended knee angles for recreation cyclists are 35-45 degrees and for road cyclists are 30-35 degrees.  Your knee should be slightly bent at the bottom of the pedal stroke.

Screen Shot 2020-06-04 at 4.55.01 AM

Diagram from American Physical Therapy Association.

Screen Shot 2020-06-04 at 5.20.28 AM

Diagram from American Physical Therapy Association.

2. Handlebars: The higher the handlebars, the more weight will be placed on the saddle.  Taller riders should have lower handlebars in relation to the height of the saddle.  Proper handlebar position allows for the shoulder to make a (roughly) 90 degree angle between the upper arm and trunk.  Trunk angle for the road cyclist is 25-35 degrees and for comfort/recreational riding is 35-90 degrees.

3. Foot position on the pedal:  The ball of the foot should be positioned over the pedal spindle for the best leverage, comfort and efficiency.  A stiff-soled show is the best for comfort and performance.

4. Hand position:  Change your hand position on the handlebars frequently for upper body comfort and prevent nerve compression in the hands and wrists.  Use a controlled and relaxed grip.  If you are experiencing numbness in your wrists or hands the above could be a problem–or you may have bike fit problems discussed above that put too much pressure through the arms and hands (e.g., short reach handlebars, handlebars placed too low, saddle tilted forward, saddle too far forward).

5. Cadence: Or sometimes known as revolutions per minute.  Each foot should be going around the cranks at a rate of 80-90 revolutions per minute (advanced cyclists 90-105 revolutions per minute)–without bouncing up and down in the seat.  Maintaining a high cadence places less stress on the lower back and knees.

6. Don’t rock your hips back and forth:  Your should be using your core strength to stabilize your hips so that they are not rocking back and forth.  You may notice yourself falling into this when fatigued.  If you are doing this right out of the gate, you may have a bad bike fit.  Rocking back and forth causes friction between you and the seat and can just get plain uncomfortable.

7. Anterior (front) knee pain:  Possible causes of this include pedaling at too low of a cadence (see “5” above), overusing your quadriceps muscles, misaligned bike cleat (see “3” above) and muscle imbalance in your legs (strong quads and weak hamstrings).

8. Lower back pain: you may have tight hamstrings, low cadence overuse of quads, poor back strength and too long or too low handlebars.

9. Foot numbness or pain: you may be overusing the quads, have low cadence that places a lot of pressure through the feet or a maligned bike cleat.

10. neck pain: you may have too low of handlebars, handlebars that tare too far away or too close or your saddle may have a downward tilt.

11. liliotibial band pain (ITB): your saddle may be too high, bike cleats are maligned or you may have a leg length discrepancy.

If you feel as though you need some help with bike fit or that your pain is stemming from injury, despite a proper bike fit, your physical therapist is here to help.  You do NOT need a referral from your doctor–or even use your insurance–to see me.  Contact me to see if working with me on your bike issues is right for you—talking is always free.

5_m-100776283-DIGITAL_HIGHRES-2066_004597-10049118

2017 USA Triathlon National Championships in Omaha, Nebraska

Understanding pain is critical to taking control of your life again

Physical pain is common.  Everyone will experience it at some point in his or her life.  Often, pain will result from an injury and will resolve when the injury heals.  This is normal.  This is good news for the 84% of us who will likely experience something like low back pain in our lives.  It will come and go and we will go on our marry way.  But for many, this pain lingers and has become the most common cause of disability and time off work in people over the age of 45 (Balagué et al. 2012). Long term, or chronic pain, that results in disability is a much bigger issue.  What’s worse is that many of these people end up relying on opioid drugs (prescription and not) in attempts to manage their pain.

Opioids and the crisis

Opioid use has sky-rocketed in recent years, and drug overdose deaths are on the rise. So much so that the Center for Disease Control (CDC) has declared that we are in the middle of an “opioid crisis” and it is an epidemic.  This epidemic is not just affecting the heroin addict living in the back alley.  It’s everyday people who rely on opioids to cope with pain (i.e., low back pain, knee pain).  The statistics are staggering:

  • From 1999 to 2017, more than 700,000 people have died from drug overdose.
  • Around 68% of the more than 70,200 drug overdose deaths in 2017 involved an opioid.
  • In 2017, the number of overdose deaths involving opioids (including prescription opioids and illegal opioids like heroin and illicitly manufactured fentanyl) was 6 times higher than in 1999.

State by State Look at Opioid Statistics

Despite this, it is important to note that THERE IS a time and place for taking opioids—for instance, following significant surgery or injury when managing pain is difficult without them.  However, prolonged use of opioids long after recovery from surgery or traumatic injury can result in addiction and can cause people to rely on opioids long term.  The reason that people become addicted to opioids is that they only mask the sensation of pain—they do not alter the source of the pain.  This is not to mention that the withdrawal symptoms are severe.  It’s hard to get off of opioids.  This is the vicious cycle of addiction.  Taking opioids long term also has side effects of depression, for which many people take more drugs.  This is why there are important Questions to ask your doctor about pain medication  when they are writing you a prescription.  Even the most well-meaning doctors can send you down the road of addiction without meaning to.

Long story short, opioids are a “bandaid” for pain and getting to the root of the problem requires understanding why someone enters a state of chronic pain.  If an injury is healed and there is no more tissue damage or new injury, then why can one still hurt?  This is what is important to get a handle on.  Many factors play a role in creating each person’s unique “pain experience” which includes emotions, thoughts and beliefs—it’s not just physical.  Read on…

Understanding Pain

Research has shown that when people understand pain, they can better manage their pain. And when one can manage his or her own pain, he or she can take life by the horns again. Simply put:

“Know pain, know gain”—David Butler

This is especially true for people dealing with chronic pain.  Many people have an overly simplistic view of how pain is experienced.  And I say “experienced” very deliberately.  As children, we learn that doing something such as touching a hot stove or stepping on a sharp object with bare feet creates pain.  These two events are generally associated with tissue damage—the skin is compromised and you get a blister or a stab wound.  But the shocking thing to most people is that this pain  does not originate in the injured part of the body.  Pain is an experience that is created in the brain once it interprets the signals that the rest of the body send to it.  So when you step on a nail, the sensory cells send signals all the way up the spinal cord to your brain where you brain interprets this event as being painful.  Obviously, this occurs in fractions of second and you generally pull your foot away from the nail.  In this experience, the interpretation of pain is a good thing—it signifies that there is a threat in your environment (the nail) that you harm you.

The fact that pain is an experience that is created by the brain explains why two soccer players can experience the same injury on the field and one gets up and keeps playing while the other lays on the ground crying out for help.  It also explains why people can experience pain in a body part without actual threat to it.  Say you had a traumatic experience as a child when you stepped on a rusty nail with bare feet and you ended up in the hospital with pain and a raging infection in your foot.  Now, when you so much as look at a rusty nail you experience pain in your foot.  You foot is healed and the nail is no where near your foot.  Danger is absent, injury is absent……but pain is ever present.  This experience is created purely in the brain.

Below are a few videos from some of the World’s leading pain experts. Watch them to learn more about how your pain experience is created ….. and how you can take control.

Below, Professor Lorimer Mosely explains how pain works.  Pain evolved as a protective mechanism to indicate when the body was in danger.  However, when our experiences change the way that pain is experienced and skews what the pain is indicating, it can result in a maladaptive response—or extreme fear from harmless sensation (i.e., a tree branch brushing one’s leg on a hike).

Each part of your body is represented on a specific area of the brain.  There is a part of your brain dedicated to being able to detect sensation of your left pinky finger—and every other part of your body.  If you experience prolonged pain in your left pinky finger, the “sharpness” of left pinky’s representation on the brain is lost and you brain can no longer create a pain experience in just your left pinky.  Maybe then your neighboring fingers begin to hurt and the pain becomes more widespread.  This is phenomena is known as brian smudging as explained below by expert David Butler.

If you have recurring or ruminating thoughts of your pain, that is a sure recipe for making your pain worse. Yes—pain has a significant emotional component.  These recurring thoughts have been termed “thought viruses”.

Myth: getting high tech imaging of your painful area will explain the source of your pain. 

 Professor Peter O’Sullivan explains the discrepancy between medical imaging and pain and how thoughts, and beliefs and movement habits actually matter more.

It’s only 1% of back pain that is really serious stuff….99% has no diagnosis based on scan”.  Peter O’Sullivan.

 

Physical Therapy is a safe alternative to opioids for pain management

If you watched the video above with Professor Peter O’Sullivan, you will have learned that many people with low back pain get medical imaging (i.e., MRI, X-rays, CT scans) that lead them to believe that their backs were really “messed up” structurally.  As a result, they developed fear of further injury and starting moving (or not moving) in ways that actually exacerbated their pain—-it wasn’t the “bulging disc” that might have been found on imaging.

“Pain does not equal structural injury” –Prof. Peter O’Sullivan

Restoring healthy movement patterns in conjunction with understanding pain is essential to managing back pain.  Physical therapists can help you do both.  Even better, physical therapy can not only get you moving better again, they can get you back to an more active lifestyle that includes activities that you love doing.   This is why the CDC has recommended physical therapy as a safe alternative to opioids for pain management.

PTvOpioids

 

YouhaveChoiceChoosePT
ChoosePT

Resources for helping managing chronic pain have been compiled by the ChoosePT movement organized by the American Physical Therapy Association (APTA). 

7 tips from the ChoosePT movement for managing chronic pain

 If you would like to delve deeper into these topics, here are two books that I would highly recommend. Click on the images to see details.

Weber Physical Therapy and Wellness supports the ChoosePT movement.  If you are experiencing chronic pain and would like a free consult to see how physical therapy can help you, please get in touch or schedule a free consultation:
Schedule Appointment

 

***

References and helpful websites:

Balagué F, Mannion AF, Pellisé F, Cedraschi C. Non-specific low back pain. The Lancet. 2012;4(379): 482-91.

Rundell SD, Davenport TE. Patient education based on principles of cognitive behavioral therapy for a patient with persistent low back pain: a case report. J Orthop Sports Phys Ther. 2010:40:494–501.

Katz JN, Brophy RH, Chaisson CE, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis [erratum in: N Engl J Med. 2013;369:683]. N Engl J Med. 2013;368:1675-1684.

Longo UG, Franceschi F, Berton A, et al. Conservative treatment and rotator cuff tear progression. Med Sport Sci. 2012;57:90–99.

http://www.pain-ed.com/blog/2019/09/09/can-the-way-we-move-after-injury-lead-to-chronic-pain/

https://www.noigroup.com/about/

https://www.cdc.gov/drugoverdose/epidemic/index.html

https://www.instituteforchronicpain.org/treating-common-pain/what-is-pain-management/therapeutic-neuroscience-education

https://www.choosept.com/choose-physical-therapy-over-opioids-for-pain-management-choosept

Determining Readiness to Return to Running Post Child-Birth

You’ve had your baby.  Other than the sleepless nights, you’re absolutely smitten.  But just when it seems that you couldn’t possibly have any more love to divvy out, you’d really like to give some love to your running shoes and favorite trails.

But are you physically and mentally ready for running?

This is the million-dollar question.

Truth be told, medical guidelines for determining readiness for you to return to running are in their infancy—pun intended.  Relatively speaking, there have not been a lot of extensive research studies to determine hard and fast guidelines for medical practioners to help guide you through this exciting and challenging transition in your life.  However, physical therapists Tom Goom, Grainne Donnelly and Emma Brockwell, have compiled the evidence that does exist as well as their extensive clinical experience to help safely guide women back to running.  What they have published is a beautiful foundation for providing advice to women at present and for building on as new research in post partum running reveals new information.  I will summarize some key points from this publication below.

“Return to running is not advisable prior to 3 months postnatal or beyond this if any symptoms of pelvic floor dysfunction are identified prior to, or after attempting, return to running” (Goom et al. 2019).

postNatalRun1Running is stressful on the body and so is child-birth.  Doing these two things too closely back to back can have adverse consequences.  This is evidenced by the prevalence of urinary incontinence, pelvic organ prolapse (POP), abdominal muscle separation and pain that are experienced by female runners after having a baby.  Urinary incontinence and POP can result from the stress that is place on the pelvic floor muscles.  For a review of the anatomy of the pelvic floor muscles click here.  Post vaginal delivery, the levator ani muscles, which are part of the pelvic floor, take 4-6 months to reach maximum recovery.  When you consider that the impact of running increases the risk 4.59 times of pelvic floor muscle dysfuntion (vs. low impact sports like cycling), you can start to see why it is recommended to wait at least a few months post child-birth prior to running.  If you have had your baby via C-section, additional time for healing is needed.  At 6 weeks post C –section, the uterine scarring is still very much healing and abdominal tissue, known as fascia, is only 51-59% as strong as it originally was.  Even 6-7 month after a C-section, abdominal fascia is only 73-93% of its original strength.

What are some indicators of pelvic floor or abdominal wall dysfunction?

  • Urinary and/or fecal incontinence
  • Urgency that is difficult to defer
  • Heaviness/pressure/bulging/dragging in the pelvic area
  • Obstructive defecation: characterized by feeling that stool remains in your rectum even after trying to pass it, excessive straining, need to use laxative or enemas to pass stool
  • separated abdominal muscles and/or decreased abdominal strength and function
  • low back or pelvic pain
  • Ongoing or increased blood loss beyond 8 weeks post child-birth that is not linked to your menstrual cycle.

If you are experiencing any of these symptoms you are definitely not ready for running and should seek medical care.

 If you are 3 months post child-birth and do not have any of the above symptoms, it is recommended that you have a complete health screening and risk assessment done to ensure readiness for graded return to running.

postnatalRun2The screening process is recommended to cover the following:

Load and impact management assessment: Your physical therapist can assess you ability to walk, squat, hop, jog with good mechanics and without pain, incontinence or feelings of heaviness in the pelvic floor.  Your pelvic floor, abdominal and leg strength should also be assessed.

Gait analysis:  It recommended that your running form be reviewed to look for significant injury risk factors.  This is something that an experienced physical therapist can provide for you.

Preexisting pelvic or lumbar spine dysfunction or hypermobility conditions (e.g., Ehlers Danlos):  If you were having pelvic or low back issues or joint laxity prior to or during pregnancy, you should exercise caution in returning to running and this may exacerbate  problems associated with joint laxity.

Fitness level: Generally speaking, women who maintained high levels of fitness before and during pregnancy, usually bounce back faster.  If you were fairly sedentary and are now looking to increase your physical fitness post-baby—that’s awesome, but you’ll need to take that into consideration when trying to take up exercise and/or running.

Breathing: Proper breathing, which is important for running, may need to be restored post-baby to recreate proper synergy between pelvic floor, abdominal muscles and diaphragm.

Psychology: Postnatal depression is experienced by 20% of mothers and it needs to be considered in the context of return to running.  Obsessive focus on returning to pre-pregnancy fitness and taking running to a level that is too intense for the stage of post partum recovery can result in injury.

Diastasis rectus abdominis: Core strength is important for efficient and injury free running.  If you have separated abdominal muscles, you will need to rehab these to minimize injury risk with running.

Scar mobility: Adhesions in C-section scars can create tension, pain and alter the function of muscles in this region, resulting in subpar running mechanics.

Breastfeeding: maintains lower levels of estrogen and continued elevated levels of relaxin, which may or may not contribute to increased laxity of joints.  Running should be timed carefully around breast-feeding so that you are not running with your breasts overly full, which can create discomfort.  It should be noted here that vigorous exercise does not compromise the quantity or composition of breast milk.

Sleep: Seven to nine hours of sleep are recommended for anyone, but it is rare that new mothers get this many hours.  Sleep deprivation impairs muscle strength, reduces protein synthesis and increases injury risk in any athlete.

Obesity: is a general risk factor for running injury and should be taken into account (BMI>30 increases injury risk).

Relative Energy Deficiency in Sport (RED-S): RED-S is formerly known as the “female athlete triad”.  Energy deficiency occurs when one expends excess energy that is not replenished with adequate nutrition and rest.  The post-partum world is full of energy expenditure via breast feeding, sleepless nights and social pressures to return to pre-pregnancy fitness.  Adding running into this mix further depletes energy.  Without adequate nutrition and rest, the risk of stress fractures, pelvic floor dysfunction and infertility is greatly increased.

Graded return to running

If you pass the above screening, you are ready to return to running!  But this doesn’t mean that you lace up and blast out the front door like you used to.  What is recommended is a graded return to running.  This means slow…literally.  The first time you run, it is recommended that you only run for 1-2 minutes at a slow pace.  Slow pace means that you can carry on a conversation with a running partner if you needed to.  In ramping up your running, you should focus initially on increasing your volume (distance or time spent running), rather than your intensity (how fast you are running). A general guideline is to not increase running volume more than 10% per week.   An example of a good program to begin when you are returning to running is a “couch to 5K” program.  Such a program gets you up to the 5K distance in about 9 weeks time.  An example of a week one starter workout might be 20 minutes total, beginning with a 5 minute brisk walk, and then alternating brisk walking with 90 second bouts of slow running.

Your physical therapist can help

You physical therapist can help you through the above screening process, rehabilitative exercise and a safe, graded return to running.  If you need pelvic floor rehab, it is advised that you see a physical therapist who is a pelvic health or women’s health specialist.  However, most orthopedic physical therapists can assist you with the first line screening, strength testing and gait analysis.  For gait analysis, it is recommended that you see a physical therapist who is experienced in this and understands running biomechanics.  Your physical therapist(s) should work in conjunction with your OB/GYN to optimize your rehabilitation program, especially if you have symptoms listed above for pelvic floor and/or abdominal dysfunction.

References:

Goom, Donnelly, and Brockwell. 2019.  Returning to running postnatal–guidelines for medical, health and fitness professionals managing this population.

 DOI: 10.13140/RG.2.2.35256.90880/2 

 

Mastering the downhill run is KEY in improving your race performance and in preventing injury

 “Fast and flat course” is a phrase that is utilized to draw some runners into signing up for particular marathons.  Hills are stigmatized even in a runner’s masochistic existence in which pushing through pain is the norm.  One of the most famous hills is “Heartbreak Hill” beginning around mile 20 of the Boston Marathon that rises 91 feet at a 3.3 % grade. Having run it, I know first hand that it’s a taxing little climb, especially at that time of the race. However, it seems to always be the hill climbing in a race that gets noted more so than any hill descent.  The Boston Marathon has a downhill trajectory from the start to about mile 8-9 when the course flattens out a bit.  Research supports that this part of the course may actually be more taxing on the body than the climb later.  In fact, mastering the downhill run may separate the men from the boys and the women from the girls in terms of performance, especially in trail and mountain running where hills are the norm.

IMG_0243

Downhill training session at Active at Altitude Running Camp.

Downhill “pounding” = increased impact force= increased injury risk

When running downhill, the force of gravity is with you.  Anyone who runs knows that it feels like your feet are pounding the pavement more when you run downhill than when you are running on flat surfaces or going uphill.  This is of concern from an injury prevention standpoint because as the magnitude of the “pounding” or impact forces go up, so does your risk of injury.  As the steepness or the grade of the downhill increases, you may have felt as though the pounding increases as well as your muscle soreness in the days following.  What you are feeling is backed by research. In a recent study, the impact that women experienced when running at 4 meters per second (8.8 mph, ~6:30 per mile) on an instrumented treadmill at grades of -5, -10, -15 and -20%; researchers found that the impact forces were significantly increased compared to running on level surfaces (Wells et al. 2020).  These findings corroborate data generated by Gottshall and Kram (2005) that indicate running down a -2.5% grade increased impact force by 54%.  Björklund et al. (2019) specifically studied impact forces that trail runners experience when running downhill, uphill and on level surfaces and found that impact forces were greatest on the downhill segments. The stress of downhill running is evident in the days following your run too.  Chen et al (2007) found that running for 30 minutes down a -15% grade decreases running economy 4-7% for several days.  Running economy is a measure of how efficient you are or how much energy your body demands to run at a particular speed and corresponds to the amount of oxygen you need to consume in a given unit of time.  Chen et al. (2007) found that following a downhill run, runners experienced increased oxygen consumption, decreased maximum strength of muscles around the knee (extensors, specifically), decreased range of motion in the knee and ankle, increased muscle damage, increased rating of perceived exertion (how hard it feels to run), and increased lactic acid levels in the blood.  In short, downhill running substantially stresses your body.

 

Why you should master downhill running to improve your performance

Perhaps you didn’t need the data summary above to prove it to you, but downhill running, without a doubt, is more stressful on your body, than level surface or uphill running.  This is exactly why you need to master it.  If you are better at running downhill, you will not only reduce the negative physiological effects on your body, but you may also have a significant advantage over your competitors in your next race.

Björklund et al. (2019) identified that speed varied the most among runners during the downhill portions of a trail run, and the more technical the section of the course, the more variable the speeds became.  So if you are looking for a window of opportunity to take down your competition on your next trail race, you will probably want to consider working on your downhill running, particularly over technical terrain.  Furthermore, Kerherve et al. (2016) found that runners tend to continue losing speed over time when downhill running, whereas speed tends to reduce and then plateau on the flats or uphill segments.  Learning how to maintain speed on the downs is key to increasing your competitive edge.

 

Tips for mastering the downhill run

So if downhill running is stressful on the body, how do we train for it without destroying ourselves?  Small doses that allow you to practice mechanics that will reduce impact and prevent injury.

One of the main reasons that people experience greater impact forces when running down hill is that they tend to lean back and run with their feet out in front of them.  This is like driving your car downhill with your foot on the brake.  This will wear out the brakes on your car quite quickly; in running, it wears out your body and puts you at increased injury risk.  At the same time, people tend to run with lower step rate or cadence when running down hill.  This means that the foot is spending greater time in contact with the ground, which translates to greater stress on the legs and rest of the body.

Given this, you need to do the opposite of what you likely tend to do.  You need to keep your steps short, quick and light with your body over your feet.  This can be very uncomfortable for some, because adding a forward lean accentuates gravity’s force to carry you down the hill even faster.  You may even feel like you are about to fall.  But becoming comfortable with this level of discomfort will not only translate to speed on the downhills, there will be less impact on your body.

As with any new skill, it is better to train it in small doses ….CORRECTLY.  And doing downhill running correctly will likely be very uncomfortable at first.  But in time, correct practice will make this skill automatic and you’ll be whipping down the hills (and maybe even having fun while doing it) without thinking much about it.

Here is an example of how you can begin to train down hill running after warming up:

  1. Find a hill that has a grade that is challenging but not utterly daunting for you (only you can define what this is).
  2. Start at the top of the hill and run down for 10 seconds with good form (high cadence, body over feet).
  3. Walk back to the top for recovery.
  4. Run downhill for 20 seconds with correct form and walk back to the top for recovery.
  5. Continue these repeats, increasing the duration of the downhill run (i.e., 30, 40, 50 and 60 seconds).
  6. cool down

As this becomes more comfortable, you can work into using hills that you would like to conquer or maybe those that are part of or mimic your upcoming race.  Strategically place this in your training schedule so that your intense workouts come earlier in the week before your downhill training session.  Remember what the data show— your running economy will be decreased in the days following your downhill workout.  When you start training downhill running, shoot for doing this only once per week.

Tip summary:

*Increase your cadence (step rate).

*Run quietly, softly.

*Lean forward, from the ankles to keep your body over your feet.

*Practice correct downhill running form in small doses (see example workout above).

*If you feel like you are going to fall forward while running downhill, you are probably doing it right!

Want to learn more or get an in-person training session?  Get in touch with me at: cfweberpt@gmail.com

IMG_0327

Slate Mountain Trail, Caribou National Forest just outside Pocatello, ID provides great hill workouts.

References

Björklund, G, Swarén, M, Born, DP, Stöggl, TL. 2019.  Biomechanical adaptations and performance indicators in short trail running.  Frontiers in Physiology. 10: p 506.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503082/

Chen, TC, Nosaka, K, Tu, JH. 2007.  Changes in running economy following downhill running.  Journal of Sports Sciences. 25(1): 55-63.

https://www.tandfonline.com/doi/abs/10.1080/02640410600718228

Gottshall, JS, Kram R.  2005.  Ground forces during downhill and uphill running.  J of Biomechanics. 30(3): 445-452.

https://www.ncbi.nlm.nih.gov/pubmed/15652542

Wells, MD, Dickin, DC, Popp J, Wang H.  2020. Effect of downhill running grade on lower extremity loading in female distance runners. Sports Biomech. 19(3): 333-341.

https://www.ncbi.nlm.nih.gov/pubmed/30274545

Teff: An iron-rich staple to boost your immune system and fuel your running

Good nutrition has always been, and will always be paramount, in keeping a healthy immune system.  And there is no time like the present to bolster you immune system with the challenging times that we are facing.  As people stock up on non-perishable items for the kitchen in order to limit trips to the grocery store, they should choose wisely in buying nutrition packed products.  One of my favorites, because it is very iron rich, is a grain called Teff. Never heard of it? Even better. Read on!

Teff’s formal name is Eragrostis tef and is a annual grass that is native to Ethiopia and Eritrea (Zhu, 2018). Yes, this is a grain, but the good news for those who have gone gluten-free by choice or necessity, is that Teff is GLUTEN FREE. Even better is that it is packed with nutritional benefits. Here’s a summary of some of them, which were nicely summarized by Zhu (2018):

-due to its high iron content, it has been shown to increase hemoglobin levels and reduce incidence of anemia

-control and reduce the incidence of diabetes

-great source of fiber

-great source of zinc, selenium and calcium

-great source protein–greater content than many other cereals

What can you do with it?

Eat it in place of your favorite oatmeal and have fun adding your favorite cereal toppings to it. Some of mine are bananas, nonfat greek plain yogurt, nuts, seeds, apples, cinnamon, berries…..go wild. Teff has a similar texture to coco wheats and a very mild, nutty flavor, so you can really customize your cereal by adding your favorite mix of superfoods to it.

IMG_0655

If you want another flour alternative, you can grind it up and make flour or buy it already ground for you.

Want to try something new? Teff is a primary ingredient of the Ethiopian staple, injera bread.

Don’t have time to cook Teff on your average weekday morning? Make a big pot of it on the weekend and store it in the fridge. Heats up nicely in the microwave or you can even eat it cold if you’re not too picky.

Where can you buy it?  You can buy Bob’s Red Mill Teff online!

Enjoy!

References:

Zhu. 2018. Chemical Composition and Food Uses of teff (Eragrostis tef). Food Chemistry. 239: 402-415.